
www.manaraa.com

Efficient Communication-Storage Tradeoffs

for Multicast Encryption

Ran Canetti1, Tal Malkin2?, and Kobbi Nissim3

1 IBM T. J. Watson Research Center, Yorktown Height, NY, 10598,
canetti@watson.ibm.com

2 Laboratory for Computer Science, Massachusetts Institute of Technology,
545 Technology Square, Cambridge, MA 02139,

tal@theory.lcs.mit.edu
3 Dept. of Computer Science and Applied Math, Weizmann Institute of Science,

Rehovot 76100, Israel,
kobbi@wisdom.weizmann.ac.il

Abstract. We consider re-keying protocols for secure multicasting in a
dynamic multicast group with a center. There is a variety of different
scenarios using multicast, presenting a wide range of efficiency require-
ments with respect to several parameters. We give an upper bound on
the tradeoff between storage and communication parameters. In partic-
ular, we suggest an improvement of the schemes by Wallner et al. and
Wong et al. [13,14] with sub-linear center storage, without a significant
loss in other parameters.
Correctly selecting the parameters of our scheme we can efficiently ac-
commodate a wide range of scenarios. This is demonstrated by Applying
the protocol to some known benchmark scenarios.
We also show lower bounds on the tradeoff between communication and
user storage, and show that our scheme is almost optimal with respect
to these lower bounds.

1 Introduction

Multicast communication (and, in particular, IP multicast routing) is an at-
tractive method for delivery of data to multiple recipients. The motivation for
multicast communication is its efficiency – multicast group users get the same
message simultaneously, hence the reduction of both sender and network re-
sources. A wide range of applications benefit from efficient multicast: interest
groups, file and real-time information update, video multi-party conferences,
on-line games and pay TV are few examples.

Securing multicast communication is non-trivial and poses a number of chal-
lenges, ranging from algorithmic problems, through system and communication
design, to secure implementation. (See overview in [5,4].) The main security con-
cerns are typically access control — making sure that only legitimate members
? Supported by DARPA grant DABT63-96-C-0018. Part of this work was done while

the author was visiting the IBM T.J. Watson Research Center.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 459–474, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

www.manaraa.com

460 Ran Canetti, Tal Malkin, and Kobbi Nissim

of a multicast group have access to the multicast group communication, source
authentication — verifying that received multicasted data is unmodified and
originates with the claimed source, and maintaining availability — protecting
against denial-of-service and clogging attacks.

This paper focuses on providing access control for multicast communication.
The standard technique to this end is to maintain a common key that is known
to all the multicast group members, but is unknown to non-members. All group
communication is then encrypted using the shared key. (We remark that long-
term secrecy is typically not a concern for multicast communication; encryption
is used mainly for obtaining short-term access control.) The main problem here
is key management — how to maintain the invariant that all group members, and
only them, have access to the group key in a group with dynamic membership.
We limit ourselves to the case where there is a centralized group controller (or,
group center) who handles the task of key management. Whenever a member
joins or leaves the group, the group key needs to be changed and the new key
needs to be let known to all members.

We concentrate on efficient schemes for this re-keying problem. In particular,
we show a tradeoff between communication and storage parameters for the group
controller and members, and provide nearly optimal upper and lower bound
for some of these parameters. Our protocol is parameterized in terms of the
tradeoff, allowing different choices of parameters to result in a variety of scheme
performances. This makes the protocol suitable for different applications and
scenarios. The works of [13,14] on efficient re-keying schemes are the starting
point for this work.

1.1 Security of Re-keying Schemes

A standard security requirement from the data encryption mechanism is seman-
tic security [8] of the group communication. Assuming the usage of appropriate
(semantically secure) encryption schemes, this requirement reduces to the se-
mantic security of the group session key ks, shared by the group members. I.e.
it is required that an adversary cannot distinguish the real session key from a
random key.

If the only operation allowed is joining new users to the group, the re-keying
problem is solved by simply giving the session key ks to the new users. If back-
ward privacy is also required (i.e. new users should not have access to past
messages), then a new session key knew

s may be selected and given to the new
users, and Eks(knew

s) is multicasted. (Alternatively, the new key can be locally
computed as a pseudorandom function of the old key.)

Removing users from the group requires the change of ks (and possibly other
data) to guarantee the semantic security of the new key against any coalition
of removed users. It is stressed that security is required against any coalition of
removed users. In particular, we do not assume any limit on the size or structure
of the coalition.

To be able to focus on the re-keying problem we assume authenticated and
reliable communication, or more specifically that the messages sent by the group

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 461

center arrive at their destination and messages are not modified, generated, or
replayed by an adversary. These concerns should be addressed separately.

1.2 Efficiency of Re-keying Schemes

Efficiency of multicast re-keying schemes is measured by several parameters: (i)
communication complexity, (ii) user storage and (iii) center storage and (iv) time
complexity. In this paper we concentrate on the communication and storage com-
plexity measures (of course, without letting the time complexity be infeasible).

Communication complexity is probably the most important measure, as it is
the biggest bottleneck in current applications. (Indeed, reducing communication
is the main motivation for using multicast technology.)

Reducing the center storage enables small memory in the security module
(which is responsible for key management). This module is typically separate
from the module(s) handling group membership; this latter task typically re-
quires special handling of each member upon joining and leaving the group, and
is left out of scope of this work. The module separation can be either logical
or physical. Furthermore, for large groups the membership module may con-
sist of several disparate components handling different regions, while the key
management module remains centralized. Also, the performance and latency
requirement from the key-management module may be more stringent.

Using our scheme, the center storage may indeed be sub-linear, thereby im-
proving on the the best previously known schemes [13,14], without a significant
change in other parameters. E.g. with current technology, for a million users
multicast group, our reduction enables a security module with all its storage in
fast cache memory, making it considerably more efficient.

The motivation for reducing user storage stems from applications in which the
users are low-end, and have severe memory restrictions (e.g. when the multicast
group consists of cable TV viewers and the user module resides in the cable
converter unit).

Since there is a large number of potential multicast scenarios it seems unlikely
that a single solution will fit all scenarios. This motivates a tradeoff between
efficiency parameters. Simple solutions suggest that such a tradeoff exists: (i)
One extreme is a center that shares, in addition to the session key, a distinct
symmetric key with each user. When a user is removed, the center sends new
symmetric keys and a new session key to each of the users separately. Thus, user
storage is minimal but the communication costs are proportional to the number
of group users. (ii) An opposite extreme is having a key for every possible subset
of users, where every potential user gets all the keys for the subsets that contain
her. Whenever a user is removed, the session key is set to the key of the remaining
subset of users. The length of the re-keying message of this solution is optimal
(it suffices to declare each removed user), but the number of keys held by each
user is clearly prohibitive (at least 2n−1 keys, where n is the group size).

Our goal is to study the tradeoff between communication and storage, and
construct schemes which are flexible enough to fit a variety of scenarios, in a
way that is provably optimal (or close to optimal).

www.manaraa.com

462 Ran Canetti, Tal Malkin, and Kobbi Nissim

We achieve this goal with respect to the tradeoff between communication
and user storage. For the tradeoff between communication and center storage,
our upper bound is better than all previously known schemes. Proving a lower
bound on the latter tradeoff remains an intriguing open problem.

1.3 Summary of Results

We give an upper bound on the tradeoff between user storage, center storage
and communication, and a lower bound relating user storage and the minimal
communication. The gap between the bounds is at most logarithmic in the size
of the group. Moreover, for a natural class of protocols, including all currently
known ones, the gap is closed, namely our scheme is optimal for this class. Thus,
our upper bound is nearly optimal with respect to our lower bound, in a strong
sense. Our upper bounds are based on the re-keying schemes of Wallner et al.
and Wong et al. [13,14], with improvements of [4] and McGrew and Sherman
[10]. These schemes communicate log n encrypted keys per update, and require
linear center storage (2n− 1 keys), and logarithmic user storage (log n keys).

Upper Bound We give an upper bound (i.e. a protocol) which allows trading
center storage with communication, with the restriction that communication is
lower bounded as a function of user storage. Specifically, for a group of n users
with user storage of b + 1 keys, the communication is O(bn1/b − b) encrypted
keys. Center storage multiplied by communication length is roughly O(n).

One instance yields O(log n) communication, O(log n) user storage, O(n
log n)

center storage. This is the first scheme with center storage sub-linear in n. Other
instances are suitable for different applications, as we demonstrate by applying
our scheme to benchmark scenarios.

In practice, re-keying protocols may be used in “batch mode”, where the
center does not immediately perform updates, but rather waits until several
updates accumulate and perform all of them at once. (This is acceptable for
most applications.) Doing this allows in many cases (such as in our scheme)
significant savings in the communication. However this paper focuses on updates
one-by-one, as this is the worst case scenario.

Lower Bounds We first give a lower bound on the communication of re-keying
protocols as a function of user storage. We prove that if each user holds at most
b + 1 keys, the communication costs are at least n1/b encrypted messages.

We further consider the class of structure preserving protocols (to which cur-
rently known schemes belong [13,4]). Intuitively, structure preserving protocols
are those that maintain the property of “u1 knows m keys which u2 doesn’t”
across updates. That is, if user u1 holds m keys which are not known to user u2,
then after deleting a user u3 6∈ {u1, u2} and performing the necessary updates,
u1 still holds about m keys not known to u2. For structure preserving protocols,
we show a tight (up to small constant factors) lower bound of bn1/b− b messages
(matching our upper bound protocol).

The lower bound is for algorithms that use a “generic” key encryption mech-
anisms. Formally, we assume a “black-box encryption service” that is the only

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 463

means of encryption (i.e., the algorithm should provide perfect secrecy in the
idealized model). Consequently, the implication of the lower bounds is that in
order to achieve more efficient protocols than ours one would have to use specific
properties of a particular encryption system, such as exploit algebraic properties
of the keys used.

1.4 Related Work

A different approach to solving the problem of allowing only legitimate users to
access multicasted data is put forward by Fiat and Naor [6]. In their formal-
ization, a center uses a broadcast channel to transmit messages to a group of
users U . There are two pre-specified sets: (i) collection S ⊆ 2U of legal subsets
of recipients, and: (ii) collection C ⊆ 2U of possible ”bad” coalitions. The goal is
to enable the center to communicate data secretly to a given set S ∈ S of users,
while preventing any coalition from C − S to gather information on the data.
Any such mechanism can be used to establish a group key and thus provides a
solution to the re-keying problem.

The [6] solution is radically different than ones discussed here. In particular,
it allows encrypting multicast communication even without requiring all users
to have a single common key; in addition, joining and leaving of members does
not necessarily require any action by the other members. However, their solution
assumes in a critical way some bound on the size or structure of the coalition of
adversarial non-members. This work considers schemes where no such assump-
tions are made.

There have been some works in broadcast encryption models that consider
lower bounds on storage and communication, and show that both cannot be
simultaneously low. Luby and Staddon [9] allow arbitrary coalitions, but restrict
the possible subsets of recipients to be all sets of certain size n − m. In this
model they study the tradeoff between the number of keys held by each user, and
the number of transmissions needed for establishing a new broadcast key. They
assumed a security model that allows translating the problem to a combinatorial
(set theoretic) problem. Their lower bound states that either the number of
transmissions is very high, or the number of keys held by every user is high.

Blundo, Frota Mattos and Stinson [2] and Stinson and Trung [12] study
communication storage tradeoff in a model of unconditionally secure broadcast
encryption [2] by providing some upper and lower bounds for key pre-distribution
schemes (e.g. [3,11]) and broadcast encryption. This model further differs from
ours in that information theoretic security is required, and storage and commu-
nication are measured in terms of amount of secret information stored by each
user, and the broadcast information rate.

Organization In Section 2 we describe our communication and encryption
model. The upper bound scheme is described in Section 3. Finally, we prove lower
bounds on the tradeoff between user storage and communication in Section 4.

www.manaraa.com

464 Ran Canetti, Tal Malkin, and Kobbi Nissim

2 Preliminaries

Let U denote the universe of all possible users1, and GC denote the group cen-
ter. We consider a set M = {u1, . . . , un} ⊆ U , called the multicast group (for
simplicity, GC 6∈ M). A session key ks is initially shared by all users in M and
by GC (and is not known to any user v 6∈ M). In addition, other information
may be known to the users and the center. We abstract away the details of the
initialization phase by which the users get their initial information. In particular
we may assume that each user joining M has an authenticated secure unicast
channel with the center GC for the purpose of initialization. (In practice this
may be obtained by using a public key system.) After the initialization phase,
and throughout the lifetime of the system, the only means of communication
with group members is via a multicast channel on which the group center may
broadcast messages that will be heard by all users in U . Our goal is to securely
update the session key when the group M changes, so that all users in the group,
and only them, know the session key at any given time.

A multicast protocol specifies an algorithm by which the center may update
the session key (and possibly other information) for the following two update
operations on M :

– remove(U) where U ⊆M . The result is the removal of users in U from the
multicast group: Mnew = M \ U .

– join(U) where U ⊆ U . The result is the joining of users in U to the multicast
group: Mnew = M ∪ U .

Since the worst case for the re-keying protocol is when |U | = 1, from now on
we assume |U | = 1 and measure the efficiency of our protocols accordingly. In
our description we focus on the removal of users from the multicast group, since
dealing with joining users is much simpler and can be done with virtually no
communication overhead.

Since we do not want to consider specific private key encryption and their
particular properties, we concentrate on a general key-based model, where the
cryptographic details are abstracted away. This is modeled by a publically avail-
able black-box pair E, D, such that E given as inputs a key k and a message
m outputs a random ciphertext c = E(k, m); given a ciphertext c and a key
k, the decryption algorithm D outputs the plaintext m. (We assume that the
encryption is deterministic; that is, two applications with the same message and
key will result in the same ciphertext. Probabilistic encryption can be built upon
E, D in straightforward ways.) This model guarantees that, when multicasting a
message encrypted with a key k, any user holding k will be able to decrypt, and
any coalition of users that does not hold k gains no information from hearing the
ciphertext. To formalize our requirement that all encryption and decryption is
being done via the black-box pair E, D, we let the adversary be computationally
unbounded. A lower bound in our model means that any scheme which beats the

1 There is no need to a-priori have an explicit representation of U . For example, U
may be the set of all users connected to the Internet.

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 465

bound must be based on a particular encryption scheme and its particular (We
remark that, although this model is formalized with the lower bounds in mind,
our re-keying schemes can be proven secure even in this model.)

Multicast Encryption Protocols We define the model of key-based multicast as
follows. Let l be a security parameter, and let the number of users n be poly-
nomial in l. Let K ⊂ {0, 1}l be a set of keys . Each user ui ∈ M holds a subset
K(ui) ⊆ K of keys. In particular, there is a “session key” ks ∈ K such that
every u ∈M holds ks. For a set of users U ⊆M we define K(U) =

⋃
u∈U K(u).

We say that a set U ⊆M holds a key k ∈ K if k ∈ K(U).
In response to a request for update operation the group center (following a

given protocol) sends a multicast message that results in changed group keys
(and possible other keys). For a key k ∈ K and a string m ∈ {0, 1}l, the group
center GC may send over the broadcast channel the ciphertext Ek(m). Users
holding k may decrypt and obtain m. After all the ciphertexts for an update
have been broadcasted by the center, the users who can decrypt ciphertexts do
so, and follow the protocol specification to update their keys. The new total set
of keys is denoted by Knew.

For the definition of security, we consider an adaptive adversary who may,
repeatedly and in an arbitrary order, submit update (remove/join) operations
to the center for subsets of his choice, and break into users u ∈ U of his choice
(thereby getting all of u’s information).

We say that a multicast system is secure if for any adversary, after any
sequence of operations as above, if the adversary has not broken into any user
who was in the multicast group while a key ks was the session key, then the
adversary has no advantage in distinguishing ks from a random key. Note that
this definition implies backward security as well, since the adversary is not allowed
to learn any information about a previous session key, unless he broke into a user
who legitimately belonged to the group at the time that key was used). We also
do not put a restriction on the number of users the adversary may break into.

Finally, by convention, when performing a remove(U) operation, all keys in
K(U) are removed from Knew (since we require arbitrary resilience, it can be
shown that there is no advantage in using a key of a removed user to broadcast a
message, and thus these keys may be removed). In particular, ks is also removed,
and thus a new key must resume the special role of a session key knew

s .
The communication complexity of an update operation is measured by the

number of ciphertexts that need to be broadcasted by the center per update (for
the worst case choice of update), and is denoted by c(n) for a group of size n.
The storage is measured by the number of keys that need to be stored.

3 A Re-keying Scheme

We start by describing two schemes that our construction will be built upon. The
first (described in Section 3.1) is a simple scheme achieving minimal (constant)
storage for the center and each user, but highly inefficient (linear) communica-
tion complexity. The second (described in Section 3.2) is a widely used scheme

www.manaraa.com

466 Ran Canetti, Tal Malkin, and Kobbi Nissim

by Wallner et al. and Wong et al. [13,14] (with an improvement of [4]), which
we call the basic tree scheme. This scheme achieves logarithmic communication
complexity and logarithmic storage for each user, but linear storage for the cen-
ter. We then show (in Section 3.4) how the basic tree scheme can be generalized
and combined with the minimal storage scheme, so as to achieve an improved
scheme with a tradeoff between the parameters. As a special case, we get a
reduction of the center storage in the tree scheme by a logarithmic factor.

3.1 A Minimal Storage Scheme
We describe a simple scheme, which requires the smallest possible amount of
storage – two keys for the center and each user2, but is very communication
intensive, requiring (n − 1) ciphertext sent per removal of a user. We will later
use this scheme as a building block in our construction.

In this scheme each user u holds the session key ks, and a unique symmetric
key ku not known to any other user. The center should be able to generate the
keys of all users, which is possible by holding a single secret key r, an index to a
pseudo-random function fr [7] (which can be constructed from the same black-
box used for encryption). The keys can be generated by applying the function
to the user’s index, namely ku = fr(u).

When a group of users U is removed from the group, the center chooses a
new session key knew

s , and sends it to each user, by broadcasting the ciphers
Eku(knew

s) for all u ∈Mnew = M \ U .
The security of this scheme is based on the security of the encryption scheme

and pseudo-random function. The parameters are summarized in Table 1.

3.2 The Basic Tree Scheme
We describe the scheme by Wallner et al. and Wong et al. [13,14] (with the
improvement of [4]). For a detailed description, we refer the reader to [13,14,4].

The group center creates a balanced binary tree with at least n leaves and
assigns a l-bit random key to every node. Let kε denote the key assigned with the
tree root vε. Denote the left and right children of node vσ by vσ0, vσ1 and their
assigned keys by kσ0, kσ1 respectively (i.e. the left and right children of the node
indexed by σ are indexed by σ concatenated with 0 or 1 respectively). Every
user in M is assigned a leaf and is given the log n + 1 keys assigned to nodes on
the path from the root to this leaf. Since kε is known to all group members it is
used as the session key: ks = kε.

Notation Let σ ∈ {0, 1}∗. Denote by σi the string resulting by erasing the
i rightmost bits of σ. Denote by flip(σ) the string resulting by flipping the
rightmost bit of σ.

Let G : {0, 1}l → {0, 1}2l be a pseudo random generator that doubles the size
of its input [15,1]. Let GL(x), GR(x) be the left and right halves of G(x) respec-
tively. Upon removal of a user uσ, The group center chooses a random number
rσ1 ∈R {0, 1}k. For i = 1, . . . , log n the group center sets knew

σi to GL(rσi), sets
rσi+1 to GR(rσi) and broadcasts Ek

flip(σi−1)
(rσi).

2 This is minimal by Corollary 3 in the next section.

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 467

t

t

t

t t

t

t

Q
Q
Q
Q
Q
Q
Q
�
�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q�

�
�
�
�
�
�

�
�
�
�
�
�
�

Q
Q
Q
Q
Q
Q
Q

r0 = GR(r01)
knew
0 ← GL(r0)

k0

Ek00 (r0)

(interpreted by

k00

Ek010(r01)
k010

k01

k011 (removed)

knew
01 ← GL(r01)

r01 ∈R {0, 1}l

knew
ε ← GL(rε)

rε = GR(r0)

(interpreted by
Ek1(rε)k1

kε

descendants of v00)

descendants of v1)

Fig. 1. The basic tree scheme actions when holder of k011 is removed. (The figure
shows only tree nodes that affected by the removal.)

E.g. if u011 is removed (see Figure 1), r01 is chosen at random, knew
01 is set

to GL(r01), r0 is set to GR(r01) and r01 is broadcasted encrypted with k010.
Then, knew

0 is set to GL(r0), rε is set to GR(r0) and r0 is broadcasted encrypted
with k00. Finally, the new session key knew

s = knew
ε is set to GL(rε) and rε is

broadcasted encrypted with k1. Now, every user can compute the changed keys
on his root-to-leaf path.

The basic tree scheme parameters appear in Table 1.

minimal storage scheme basic tree scheme

user storage 2 log n + 1

center storage 2 2n − 1

communication (n − 1) log n

Table 1. Parameters of the basic schemes.

3.3 On the Storage Requirements of the Group Center

On first glance, reducing the center storage requirements in the tree scheme may
proceed as follows. Instead of having the center keep all keys on the tree, the keys
may be generated from a single key, say by applying a pseudo-random function,
and the center will keep only this secret key. However, this idea does not seem to
work, since when an update occurs, the center will have to change the secret key,
requiring changing the entire tree, thus bringing the communication to linear.3

3 Alternatively, the secret key may stay the same, but some counter be changed for
every update. However, this is only useful if we require threshold security (requiring

www.manaraa.com

468 Ran Canetti, Tal Malkin, and Kobbi Nissim

In the next subsection we reduce the center storage to n
log n . Further reducing

the center storage, or alternatively proving it impossible, remains an interesting
open problem.

3.4 Combined a-ary Tradeoff Scheme

The basic tree shown in the previous paragraph may be naturally generalized
from binary trees to a-ary trees. We combine this generalization with the minimal
storage scheme to create our tradeoff scheme. There are two parameters of the
construction (i) a - the degree of the tree internal nodes, and (ii) m - the size
of user subsets to which the minimal storage scheme is applied. The parameters
determine the number of keys given to every user and the communication costs
for an update operation. Details follow.

Divide the multicast group users to disjoint subsets of size m: U1, . . . , Un/m,
∪n/m

i=1 Ui = M . The group center constructs an a-ary tree of height b = dlogad n
mee

(i.e. the tree has at least n/m leaves). Assign subset Ui with the ith leaf of the
tree. As in the basic tree scheme, a random key is assigned with each tree node.

For m = 1, Ui = {ui}, the scheme is a simple generalization of the basic tree
scheme to a-ary trees. For m > 1, we combine the basic tree scheme and the
minimal storage scheme as follows. Every user u ∈ Ui is given the b keys assigned
to the nodes on the path from the root to the ith leaf. The center holds all these
keys, as well as secret keys ri for each leaf i (ri’s are not known to any user).
ri is used as the seed for the minimal storage scheme between the group center
and Ui, namely ri is used for generating a unique private key for every u ∈ Ui.
Whenever a user u ∈ Ui is removed, the keys on the path from the ith leaf to
the root are changed. The center sends to every user in Ui \ {u} the new key for
the ith leaf as in the minimal storage scheme, and then sends the ciphertexts
necessary to update the path to the root as in the basic tree scheme.

The security of this scheme follows from the security of the minimal storage
scheme and the basic tree scheme (based on the security of the pseudorandom
function). The parameters of the scheme appear in Table 2.

general m, a Example 1 Example 2

user storage loga(n
m

) + 1 O(log n) 2

center storage n
m

· a
a−1

O(n
log n

) n1/2 + 1

communication m − 1 + (a − 1) loga(n
m

) O(log n) 2n1/2 − 2

Table 2. Parameters of the tradeoff scheme. Note that setting a = m = n gives
the minimal storage scheme and setting m = 1, a = 2 gives the basic tree scheme.
In Example 1, a = 2, m = O(log n), in Example 2, a = m = n1/2.

storage which is linear in the size of the coalition). For the strong notion of security
against arbitrary coalitions, this would again require linear storage from the center.

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 469

Denote the center storage by sGC , the user storage by b+1 (i.e. b = loga(n
m),

or equivalently a = n
m

1/b) and the communication by c = c(n). The tradeoff
scheme allows trading center storage and communication costs, subject to the
restriction that communication costs are lower bounded as a function of user
storage. Specifically:

Theorem 1. There exist secure multicast encryption protocols such that

1. sGC · c = Θ(n).
2. c = Θ(bn

1
b).

These bounds follow from the parameters of our scheme in Table 2.
Thus, our scheme is flexible enough to deal with a large range of applications,

adjusting the parameters accordingly (see, for exampele, [4,5] for a discussion
and two very different benchmark scenarios).

In particular, it follows that using our scheme the center storage may be
reduced by a factor of log n with respect to the storage in [13,14,4]. Further re-
duction in the center storage is achieved by noticing that the center need not hold
an explicit representation of keys, instead it can hold a shorter representation
from which it is possible to compute the keys efficiently. Consider, for instance,
the case where the group center holds a secret key r to a pseudo-random function
fr : {0, 1}l → {0, 1}l, and a counter cnt which is initially set to zero. Set m > 2.
When a user in Ui is removed, the center uses ri = fr(cnt), stores cnt in the
leaf corresponding to Ui and advances cnt. All the nodes on the path from the
ith leaf to the root store a pointer to leaf i. This way, the center may compute
any key in the tree via one application of fr and O(loga

n
m) applications of the

pseudo random generator G.
As an example, consider a group with a million users using DES (7-bytes

keys). In the basic construction, the needed center memory is 2 · 106 · 7 =
14Mbytes. Using our construction with a 4-bytes counter reduces the center
memory to 2 · 106 · 4/20 = 400Kbytes, which is small enough to be put in a fast
cache memory.

4 Lower Bounds

In this section we describe lower bounds on the amount of storage and the
communication complexity per update (both measured in units of l bits, namely
the key size), and the relation between the two. We begin by observing simple
lower bounds on the user storage and the number of keys in the system.

Lemma 2. For any secure multicast encryption protocol, ∀U ⊆ M ∃k ∈ K
such that k ∈ K(U) but ∀ v ∈M \ U, k 6∈ K(v) (every subset of users has a key
which does not belong to any other user outside the subset).

Proof. Assume for contradiction that there exists a subset U ⊆ M such that
∀ k ∈ K(U), k ∈ K(M \U). That is, every key held by users in U is also held by
some user in M \U . It follows that any multicast message which is understood by

www.manaraa.com

470 Ran Canetti, Tal Malkin, and Kobbi Nissim

someone in U is also understood by the coalition M \U . Consider the operation
remove(M \ U) (whether done by removing the users one by one, or a more
general removal of the whole subset). By the above, there is no way to provide
U with a new session key that is not known to the coalition M \U , and thus this
update operation cannot be performed securely, yielding a contradiction. ut

Corollary 3. For any secure multicast encryption protocol,

1. Every user u ∈ M must hold at least two keys: a unique key ku known only
to u and GC, and the session key ks.

2. The total number of keys in the system is |K| ≥ n + 1.

We now turn to prove lower bounds regarding the tradeoff between com-
munication and user storage. Consider any given secure multicast encryption
protocol. Recall that n denotes the number of users in the multicast group M ,
and c(n) the denotes the maximal communication complexity required for re-
keying following a deletion of a user from the group. We let b(n) + 1 denote the
maximal number of keys, including the session key, held by any user in M (for
convenience, we sometimes omit the argument n from the notation of b). We will
prove bounds on the relation between b(n) and c(n).

We start with the special case of b(n) = 1, namely for a system where each
user holds only one key in addition to the session key. This case will be used in
the following general theorems.

Lemma 4. If the maximal number of keys held by each user is b(n) + 1 = 2,
then the re-keying communication costs satisfy c(n) ≥ n− 1.

Proof. Since each user u holds at most two keys, by Corollary 3 these must be
the session key ks and a unique key ku known only to u. When a user is removed,
the other n− 1 users must be notified in order to establish the new session key.
But since ks is known to the removed user it cannot be used, forcing the center
to use the unique keys ku for each user who stays in the group, requiring one
message per user, for a total of n− 1 messages. ut
The minimal storage scheme presented in Section 3.1 matches the above lower
bound.

Theorem 5. Let b(n) + 1 be the maximal number of keys held by any user in
M . Then, the re-keying communication costs satisfy c(n) ≥ n1/b(n) − 1.

Proof. The proof is by induction on b. The base case, b(n) = 1, is proved in
Lemma 4. For b(n) > 1, denote by tk the number of users holding key k. Denote
by kmax a key other than the session key, such that t = tkmax is maximal.

On one hand, consider the set of t users holding the key kmax. By the induc-
tion hypothesis there exists a user holding kmax whose removal incurs re-keying
communication costs at least t

1
b−1 − 1, even if only the t users holding kmax

are considered. On the other hand, when removing any user, the communication
must be c(n) ≥ n

t , since each message is an encryption under some key k which

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 471

is understood by at most t users. It follows that the re-keying communication
complexity is at least

c(n) ≥ max(t
1

b−1 − 1,
n

t
) ≥ max(t

1
b−1 ,

n

t
)− 1 ≥ n1/b − 1

where the last inequality holds for any 1 ≤ t ≤ n. ut
For constant b the above bound is tight (upto a constant factor), and agrees

with the scheme in Section 3. Otherwise, there is an O(b) (and at most O(log n))
gap between the above lower bound and the upper bound in Section 3.

In the following we consider a class of structure preserving re-keying proto-
cols, defined below, that includes our protocol in Section 3 as well as the other
known protocols. We show a tight lower bound (matching our upper bound) for
this class, which is c(n) ≥ bn1/b. For the special case b(n) = 2 this bound holds
even for protocols that are not structure preserving, and we find it useful to
prove it in the following lemma. The proof follows the direction of the proof of
Theorem 5 above with a more careful analysis.

Lemma 6. If the maximal number of keys held by each user is b(n) + 1 = 3,
then the re-keying communication costs satisfy c(n) ≥ 2

√
n− 2.

Proof. Each user u holds at most 3 keys, which by Corollary 3 must include the
session key ks, a unique key ku, and a possible additional key. As before, let t
denote the number of users holding a key kmax other than the session key, which
is held by the maximal number of users. Consider the operation of removing
one of the users holding kmax. All other t − 1 users holding kmax can only
receive messages encrypted by their unique key, since the other two keys they
are holding, kmax and ks, were known to the removed user. This requires t− 1
messages. Since these messages are sent using unique keys, they do not give any
information to the n − t users not holding kmax, and thus additional messages
should be sent to those users, requiring at least n−t

t encryptions. Altogether,

c(n) ≥ t− 1 +
n− t

t
= t +

n

t
− 2 ≥ 2

√
n− 2

where the last inequality holds for any 1 ≤ t ≤ n. ut
An instance of tradeoff scheme (Example 2 in Table 2) matches the above lower
bound.

Definition 7. A protocol is structure preserving if ∀U ⊆ M and ∀v, v′ ∈ M
(v 6= v′), if there exists k ∈ K such that ∀u ∈ U, k ∈ K(u) but k 6∈ K(v), then
after the operation remove(v′) there exists k′ ∈ Knew such that ∀u ∈ U \v′, k′ ∈
Knew(u) but k′ 6∈ Knew(v).

Intuitively, structure preserving protocols are those that maintain the prop-
erty of “the set U has advantage over the user v” across updates, for any subset
U and user v. That is, if there is a set of users U all sharing a key k, and a user
v which does not have this key, then after removing another user v′ (whether
v′ ∈ U or not), the users U still holds some key k′ that v does not hold.

www.manaraa.com

472 Ran Canetti, Tal Malkin, and Kobbi Nissim

Theorem 8. For structure preserving protocols, the re-keying communication
costs satisfy c(n) ≥ bn1/b − b, where b + 1 denotes the maximal number of keys
held by any user in M .

Proof. The proof is by induction on b (using a stronger induction hypothesis
described below). The base case b = 1 follows from Lemma 4. We have also
proved the case b = 2 in the proof of Lemma 6, and in fact we use here the same
idea as in the proof of Lemma 6. However, the difference is that for b = 2, the
messages sent to the t − 1 users holding kmax cannot be interpreted by anyone
who does not hold kmax (since they are sent using unique keys), and thus they
can be simply added to the messages sent to the users that do not hold kmax.
In contrast, for b > 2, this is not necessarily true: some keys can be shared both
by users holding kmax and users that do not hold kmax. Here we use the fact
that the protocols is structure preserving and count the t − 1 messages needed
to update kmax which cannot be interpreted by users that do not hold kmax.
Details follow.

We start by describing a process for selecting a user to be removed: we
choose a maximal subset holding some key, then choose a maximal subset of
this subset holding another key, and so on, going to smaller and smaller subset
until we reach a single user. More formally, denote by kb+1

max = ks (the session
key), and U b+1

max = M (the entire multicast group). For i = b, b − 1, . . . , 1 let
ki

max 6∈ {ki+1
max . . . , kb+1

max} be a key that is held by a maximal number of users.
Let U i

max be the set of users holding ki
max. At the end of the process U1

max = {u}
is a singleton, since k1

max is the unique key of a user u. Select to remove u.

Lemma 9. When removing a user according to the selection process described
above, the communication re-keying costs satisfy c(n) ≥ t2 + t3

t2
+ · · ·+ tb+1

tb
− b,

where ti = |U i
max| (in particular, tb+1 = n).

We prove the claim by induction on b. For b = 1 we simply need to prove
c(n) ≥ t2− 1 where t2 = n, which follows from Lemma 4. For b ≥ 2, let u be the
user to be removed according to the selection process above. Consider the set
U b

max, which is a maximal-size set of users holding a key kb
max 6= ks. Since the

protocol is structure preserving, after removing u there should be a key k′ which
is held by every user in U b

max \ {u}, but not by any other user. Because of the
way u was chosen, if |U b

max \ {u}| = tb − 1 > 1 then no such key k′ unknown to
u exists before the update, because otherwise the next maximal subset would be
chosen as U b−1

max = U b
max\{u}, and u would not be selected. Therefore, the center

needs to send messages to generate this key. By the induction hypothesis, this
requires communication of at least t2 + t3

t2
+ · · ·+ tb

tb−1
− (b−1), which cannot be

interpreted by any user outside of U b
max. Adding to it the communication costs

for these outside users (in order to establish a new session key), sums up to

c(n) ≥ t2 +
t3
t2

+ · · ·+ tb
tb−1

− (b − 1) +
n− tb

tb
= t2 +

t3
t2

+ · · ·+ n

tb
− b

as needed.

www.manaraa.com

Efficient Communication-Storage Tradeoffs for Multicast Encryption 473

The only cases which we did not handle are those where U b
max \ {u} is small

(empty or a singleton). If U b
max \ {u} = φ, by the maximality of U b

max, each user
holds only the session key and a unique key, and the bound of Lemma 4 can
be applied. If it a singleton, any key other than the session key is held by at
most two users, which implies that a message sent to the user in U b

max \ {u} (in
order to update the session key) is encrypted by the unique key and cannot be
interpreted by other users, thus the same calculation as above holds.

Thus, we have proved the claim. The theorem follows by observing that

t2 +
t3
t2

+ · · ·+ n

tb
≥ bn1/b

which can be proven by induction on b. Thus, c(n) ≥ bn1/b − b, and the proof is
complete. ut

Acknowledgments

We thank Moni Naor for pointing out the improvement using counters described
at the end of Section 3.4.

References

1. M. Blum and S. Micali, How to generate cryptographically strong sequences of
pseudorandom bits, SIAM J. Comput. 13 (1984), no. 4, 850–864.

2. C. Blundo, L. A. Frota Mattos and D. R. Stinson, Trade-offs between commu-
nication and storage in unconditionally secure schemes for broadcast encryption
and interactive key distribution, in Advances in cryptology—CRYPTO ’96 (Santa
Barbara, CA), 387–400, Lecture Notes in Comput. Sci., 1109, Springer, Berlin.

3. C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro and M. Yung, Per-
fectly secure key distribution in dynamic conferences, in Advances in cryptology—
CRYPTO ’92, 471–486, Lecture Notes in Comput. Sci., 740, Springer, Berlin.

4. R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and B. Pinkas, Multicast
Security: A Taxonomy and Efficient Authentication, Infocomm 1999.

5. R. Canetti and B. Pinkas, A Taxonomy of Multicast Security Issues, Internet draft
<draft-canetti-secure-multicast-taxonomy-00.txt>, ftp://ftp.ietf.org/internet-
drafts/draft-canetti-secure-multicast-taxonomy-00.txt.

6. A. Fiat and M. Naor, Broadcast Encryption, in Advances in cryptology—CRYPTO
’93 (Santa Barbara, CA), 480–491, Lecture Notes in Comput. Sci., 773, Springer,
Berlin.

7. O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.
JACM, Vol. 33, No. 4, pages 792–807, 1986.

8. S. Goldwasser and S. Micali, Probabilistic encryption, J. Comput. System Sci. 28
(1984), no. 2, 270–299.

9. M. Luby and J. Staddon, Combinatorial Bounds for Broadcast Encryption, in
K. Nyberg, editor, Advances in Cryptology—EUROCRYPT ’98 (Espoo, Finland),
512-526, Lecture Notes In Comput. Sci., 1403, Springer, Berlin.

10. McGrew D. A., and Sherman A. T., Key Establishment in Large Dynamic Groups
using One-way Function Trees. Manuscript, 1998.

www.manaraa.com

474 Ran Canetti, Tal Malkin, and Kobbi Nissim

11. D.R. Stinson, On some methods for unconditionally secure key distribution and
broadcast encryption, to appear in Designs, Codes and Cryptography.

12. D.R. Stinson and T. van Trung, Some new results on key distribution patterns and
broadcast encryption, to appear in Designs, Codes and Cryptography.

13. D. M. Wallner, E. J. Harder and R. C. Agee, Key Management for Multi-
cast: Issues and Architectures, Internet draft <draft-wallner-key-arch-01.txt>,
ftp://ftp.ietf.org/internet-drafts/draft-wallner-key-arch-01.txt.

14. C. K. Wong, M. Gouda and S. S. Lam, ”Secure Group Communication Using Key
Graphs”, SIGCOMM ’98. Also, University of Texas at Austin, Computer Science
Technical report TR 97-23.

15. A. C. Yao, Theory and applications of trapdoor functions, in 23rd annual sympo-
sium on foundations of computer science (Chicago, Ill., 1982), 80–91, IEEE, New
York.

	Introduction
	Security of Re-keying Schemes
	Efficiency of Re-keying Schemes
	Summary of Results
	Related Work

	Preliminaries
	A Re-keying Scheme
	A Minimal Storage Scheme
	The Basic Tree Scheme
	On the Storage Requirements of the Group Center
	Combined a-ary Tradeoff Scheme

	Lower Bounds

